
Executive Summary

Whether you are starting a new project or you are trying to solve an issue
with your existing database management solution, you will eventually face
the dilemma of choosing a database management system (DBMS). There
are hundreds of available solutions and we can easily get lost in the maze of
marketing materials and biased benchmarks.

Choosing the right database management system is often a critical decision
for the success of your project. Once the product is actively used, changing the
backing DBMS can be a gamble. According to Gartner, “more than 50% of data
migration initiatives will exceed their budget and timeline—and potentially harm
the business—because of flawed strategy and execution”.1

Keeping an unfit DBMS is not a wise decision either as it might hinder the
performance of your application, exponentially increase your costs when
successfully scaling your user base or lead to costly outages.

In this guide, we help you make a considered decision on the right DBMS for your
use case by going through the different criteria you need to review. We will go
beyond the simplistic, and often misleading, classifications like SQL vs NoSQL to
focus on the structural differences between DBMS solutions and their impacts
from cost, performance, operability and convenience perspectives.

1 Make Data Migration Boring: 10 Steps to Ensure On-Time, High-Quality Delivery, Gartner, 2021

How to choose a database
management system
Hint: by asking the right questions

https://db-engines.com/en/ranking
https://www.gartner.com/en/documents/3976289

2

Contents

Executive summary 1

Table of contents 2

What criteria to consider when choosing your DBMS 3

Human factors 3

Cost factors 3

Use case related factors 4

The right questions to answer 4

Access patterns and used operators 4

Availability guarantees 4

Consistency and isolation guarantees 7

Response times and throughput 7

Hardware characteristics 8

Data characteristics 9

Index related optimisations 10

Storage related optimisations 10

On-disk layout 10

Compression 10

Extent based space management 11

Database deployment models 11

Driver characteristics 12

Scaling 13

Horizontal scaling 13

Vertical scaling 13

Operability 14

Security 14

Compatibility/Integrability 14

Support 14

Run your own tests 15

Conclusion 16

Further reading 16

3

What criteria to consider when choosing
your DBMS

Choosing a database involves analysing different factors:

•	 Human factors
•	 Cost factors
•	 Use case related factors

Let’s explore each of the factor types separately.

Human factors

Artificial intelligence is evolving quickly, but selecting and operating a DBMS
remains the responsibility of humans. Therefore, we still need to care about:

•	 Getting buy-in from relevant stakeholders. First, we need to expose the
rationale behind the introduction of the new DBMS. Then, we need to set
clear KPIs to measure the success of the project (more satisfied customers,
better performance or operability, talent attraction…). Finally, the execution
plan should address the technical recommendations or concerns raised by
 the experts.

•	 Knowledge of the concerned team members about the involved technologies.
This goes beyond the DBMS itself to cover all the tooling around it. Topics such
as the testability of the set-up (in a dev laptop or in the CI/CD pipeline) and the
quality of the available client drivers are as important as the DBMS server itself.

Therefore, ramping up your team is one of the areas you need to invest in as early
as possible. That leads us directly to the next consideration – cost.

Cost factors

You need to factor several costs when introducing a new DBMS, including:

•	 As already mentioned, the cost to strengthen or ramp-up your staff on the
DBMS technology.

•	 Licence or subscription cost to use the new software components or to get
support for them.

•	 Migration costs to adapt your software stack and to migrate the data to the
new solution.

•	 Buying or upgrading hardware to accommodate the new solution’s needs.

Canonical helps you address all of the above points through our simple per-node
Ubuntu Pro pricing and through our advisory services that provide expert insights
during all the steps of your journey.

Caring about human and cost factors is essential when choosing a database. Yet,
your use case and operability constraints should ultimately guide your choice.

https://ubuntu.com/pro/subscribe
https://canonical.com/data/postgresql

4

Use case related factors

Your DBMS solution should ultimately help you achieve your business goal and
it should fit into your operational constraints. Those goals and constraints are
typically formalised through Service Level Agreements (SLAs) which you commit
to your end users. SLAs can cover a wide variety of aspects like response time,
data loss tolerance and uptime guarantees.

In the next section, we will go over most of the SLA related questions you need to
answer when choosing your DBMS.

The right questions to answer

Let’s lay out the questions to go through when choosing your DBMS. The
questions are grouped in different categories and are ordered by priority.

Access patterns and used operators

Data is meant to be used, and how you use it should arguably be your most
important criteria. Therefore, you need to answer the following:

•	 Do I always access my data with the same stable unique key?
•	 Do I need to express relations (e.g. joins, parent-child) between different data

sets that cannot be merged into a single hierarchy?
•	 What kind of operations do I need to use on my data or its derivatives (equality,

bigger/smaller, min/max, avg, count(*), pattern matching)?

You need then to check if the DBMS you are considering has built-in support for
the access patterns you intend to use. For example, picking a pure key-value store
when most of your queries involve joins is not optimal. Another example, would
be picking a DBMS that does not support window functions while you often need
to use them.

Now that we know we can access our data the way we want, we need to check
whether the DBMS has the features to help us achieve the availability guarantees
we are aiming for.

Availability guarantees

The availability of a given DBMS deployment is often expressed using the
Recovery Time Objective (RTO) and the Recovery Point Objective (RPO) metrics.
RTO measures service availability while RPO measures data availability. Therefore,
our questions can be formulated as “what RTO and RPO values am I targeting in
the event of one or several failures?” All hardware components will eventually fail
so it is better to consider your target SLAs per failure event. For databases, you
should at minimum consider:

•	 Local or remote storage failure
•	 Node failure (motherboard, cpus, power)
•	 Network failures (network partition, NIC failure)

https://en.wikipedia.org/wiki/Window_function_(SQL)

5

All the components of a DBMS deployment contribute to the overall availability
of the solution. For example, a well implemented database driver can contribute
to a better perceived availability by implementing connection health checks and
automatic retries. The following table list some of the important availability
related features and how they contribute in honouring your availability claims:

Feature Availability related benefits or impacts

Storage redundancy

(RAID10, erasure coding …)
Sustain single drive failures.

Granular replication

acknowledgement strategies

Gives you the flexibility to choose when a change is considered

safely replicated by specifying:

•	 The number of replicas acknowledging the reception

of the change

•	 The durability guarantee of the received change:

•	 Received in memory

•	 Persisted on disk

•	 Persisted and applied

Set maximum replication lag

Sets a maximum data loss target by ensuring that primary will

wait for replicas to catch up when the replica lag exceeds a given

threshold. You can think of it as a backpressure strategy.

Async replication

Provides a copy of your data that you can use as a fail-over target.

Protects the primary copy from issues impacting the

synchronously replicated instances at the expense of some

potential data loss.

Synchronous replication

Provides an identical copy of your data that you can use as a

fail-over target.

Guarantees zero data loss if at least one of your synchronously

replicated copies survives the failure event.

Delayed replication
Delays the propagation of logical corruptions (like a delete issued

by mistake) to your copies.

Flashback

Allows you to rewind the database state to a previous point-in-

time. Flashback can typically be performed at various levels:

•	 Database level

•	 Table level

•	 Individual objects (e.g. rows)

Full backups

Store full copies of your data in another data store (typically an

object store). So when a failure impacts your primary data store,

you can still recover the data.

Incremental backups

Backup the delta between the current state and the most recent

backup (full or incremental). This enables you to perform

recovery with typically minute granularity while optimising the

overall backup size (compared to performing full backups at the

same frequency).

6

Generally speaking, the more availability features a DBMS supports, the easier it
will be for you to achieve your availability targets. Yet, the relative importance of
the features will depend on your use case and needs. Our Canonical experts can
provide additional guidance through our advisory services.

Ensuring that your data is preserved against the adversity of failure events is one
of the most desirable attributes of a DBMS deployment. Ensuring that the right
data is returned to your clients is equally important. Let’s explore why.

Feature Availability related benefits or impacts

Backup on online instance

Keep the database instance usable when performing a backup.

There are various usability levels. The database, while being

backed up, can still be used:

•	 As a failover target when primary is down

•	 To serve read traffic

•	 To serve write traffic

Consensus protocols

The cluster is able to automatically agree on a new topology in

the event of a failure impacting a subset of its components. This

is especially used to react to network failures.

Online changes of parameters
The more parameters you can change without restarting the

database server, the less outages you will have.

Non blocking schema

(a.k.a. DDL) changes

The more changes you can perform to your DBMS content

without blocking concurrent user queries, the better perceived

availability you will have from end user perspective.

Client or proxy based failovers Makes server failovers transparent to connected clients.

Client/Server connection health checks
Prevents the application or the server from using a dead

connection.

Client supplied timeouts
Prevents the application from hanging indefinitely – for example,

when waiting for a lock release.

Client automatic retries Overcome transient failures at the application layer.

Client-side circuit breaker
Implements fail-fast semantics to prevent propagation of failures

to all your applications.

https://canonical.com/data/postgresql#get-in-touch

7

Consistency and isolation guarantees

In a simplistic world where all your clients are reading or modifying your data
in a serial fashion (so one after the other), you do not need to care about
consistency. Consistency and isolation concerns arise when you have multiple
clients concurrently modifying and reading the same data sets. The ISO standard
attempted to formalise some of those concerns. For example:

•	 Dirty reads happen when a client B reads in-flight changes (i.e. not yet
committed) by another client A

•	 Non repeatable reads happen when client B reads the same object twice and
the values returned differ because of the in-between committed modifications
of client A.

•	 Phantom reads happen when client B reads a set of objects twice and their
cardinalities differ because of the in-between committed modifications of
client A.

Some use cases are more sensitive to the above issues than others. For example,
the banking sector needs stronger consistency guarantees than the ones required
by a social forum application. Allowing dirty reads in a system managing financial
transactions would probably lead to the bankruptcy of the entity using the
system.

There are dozens of consistency models to potentially know and care about.
Yet, a pragmatic approach would be to stick to the SQL standard as most DBMS
document their guarantees using the standard’s four defined isolation levels:

•	 READ UNcommitted which is the lowest isolation level
•	 READ COMMITTED which prevents dirty reads
•	 REPEATABLE READS which prevents non repeatable reads
•	 SERIALIZABLE which prevents phantom reads

So the questions you might ask are the following:

•	 What consistency model is needed for my use cases ?
•	 What is my target consistency model ?
•	 Does my DBMS support my target consistency model ?

It is important to know that a DBMS can provide different consistency guarantees
per type of operation (update of a single row, update of multiple rows …). So it is
important to check the claimed consistency for the operations you intend to use.

You might wonder why you shouldn’t simply aim for the strongest isolation and
consistency model. It is because, according to the PACELEC theorem, distributed
systems need to choose between latency and consistency.

So aiming for a given consistency might influence the latency of your transactions
which in turn will influence the best achievable throughput and response times
for your distributed database. Let’s talk next about your target response times
and target throughputs.

Response times and throughput

Having a better response time than competitors can be equivalent to having
better market shares. This is especially true in e-commerce businesses like
booking platforms.

http://www.vldb.org/pvldb/vol7/p181-bailis.pdf
https://en.wikipedia.org/wiki/PACELC_theorem

8

The response time of a service depends on several factors including hardware
and software, with hardware defining the limit. Let’s start by looking at some
hardware characteristics that are worth keeping in mind when thinking about
response times.

Hardware characteristics

The below table summarises some of the fundamental latency ranges that you
can expect from different hardware types and media. These ranges are a key
consideration when targeting a given response time:

The above table establishes a clear hierarchy between the different types of
storage media. Yet, it only considers the access time (of the first fetched byte).
The following table helps us understand the impact of the media type, interface
and the I/O pattern on media performance, expressed in terms of throughput:

Hardware type Media
Typical access latencies
(in nanoseconds)

Volatile SRAM CPU - L1 cache 1 ns

Volatile SRAM CPU - L2 cache 4-10 ns

Volatile SRAM CPU - L3 cache 10-20 ns

Volatile DRAM Main memory (DRAM) 100 ns

Persistent flash PCIe SSD (10 us) 10 000 ns

Persistent flash SAS SSD (100 us) 100 000 ns

Persistent spinning disk SAS HDD (15k rpm) (2 ms) 2 000 000 ns

Persistent tape SAS tape (20 sec) 20 000 000 000 ns

Protocol Interface Media type I/O pattern
Throughput
in MB/s

NVMe PCIe 5 SSD Random (4KB) 6 000

NVMe PCIe 5 SSD Sequential 14 000

NVMe PCIe 4 SSD Random (4KB) 4 000

NVMe PCIe 4 SSD Sequential 7 000

SATA/SAS HDD Random (4KB) 3

SATA/SAS HDD Sequential 200

9

The previous tables highlight several facts that are behind many of the
optimisations implemented by mainstream DBMS:

•	 Sequential access is faster than random access. Thus, several DBMS (like
PostgreSQL and MySQL) use Write Ahead Log to delay random IO in favour of
sequential IO at commit time (and also to provide atomicity and durability).
Many query optimisers will also favour sequential access over random access
when choosing the optimal execution plan (check PostgreSQL’s default values
for random_page_cost and seq_page_cost for an example).

•	 Flash storage is faster than spinning disks. Hence, more and more DBMS are
improving or redesigning their storage engines to benefit from modern storage
solutions like NVMe SSDs. LSM Trees and RocksDB are examples of such efforts.

•	 Volatile memory is faster than persistent memory. This fact is, by far, the most
impactful performance optimisation. Therefore all DBMS leverage memory as a:
•	 Cache to accelerate their operations. Many DBMS will pick memory optimised

structures when caching data (as with MySQL’s adaptive hash index).
•	 Staging area to compute changes before flushing them to persistent storage

(instead of sending all intermediate results to disk).
•	 Buffer changes before flushing them to persistent storage (check

PostgreSQL’s commit_delay for more practical details).
•	 CPU caches are even faster than volatile memory. CPU caches are managed

solely by the CPU, so DBMS processes cannot access them directly. However,
some DBMS try to favour cache locality by implementing a shard per core model
(as with ScyllaDB).

So your target response time might significantly impact your choice of DBMS and
the type of hardware you will allocate to it. For example, when targeting read
times below the milliseconds range you need to ensure that your working set fits
entirely in memory and that the chosen DBMS uses memory optimised structures.
In such a case, choosing an in-memory DB or configuring your DB (check related
settings in PostgreSQL, for an example) to act as one might be a pertinent choice
when you can afford to lose some of your data.

In addition to choosing a DBMS that implements optimisations targeting the
hardware you intend to use for your use case, it is also essential to use a DBMS
that implements optimisations for the data types you need to manipulate and the
associated access patterns.

Data characteristics

Your DBMS needs to have support (either built-in or through extensions) for the
data types you need to manipulate. Data types can be categorised by the used
exchange format (XML, JSON) or by their content (geo-spatial, graph, time-series,
natural language).

You can store everything as data blobs and perform all decoding, sorting
or analytical processing at the application layer. But this would lead to poor
performance and poor developer experience, as it would be error prone and
involve a lot of boilerplate code.

A DBMS with support for your data type can provide convenient functions
to simplify your queries. Moreover, such a DBMS can implement various
optimisations that are hard to mimic at the application layer. Those optimisations
usually take the form of specialised index types or specialised storage formats
that will significantly accelerate your queries.

https://postgresqlco.nf/doc/en/param/random_page_cost/
https://postgresqlco.nf/doc/en/param/seq_page_cost/
https://en.wikipedia.org/wiki/Log-structured_merge-tree
https://en.wikipedia.org/wiki/RocksDB
https://dev.mysql.com/doc/refman/8.0/en/innodb-adaptive-hash.html
https://www.postgresql.org/docs/current/runtime-config-wal.html#GUC-COMMIT-DELAY
https://www.postgresql.org/docs/current/non-durability.html

10

Index related optimisations

The following table summarises the index types you need to look for based on the
data you are manipulating and the operators you intend to use:

Alongside indexing, another way to optimise lookup performance is to choose the
right on-disk format for your specific use cases. Let’s check some of the related
optimisations.

Storage related optimisations

On-disk layout

All mainstream DBMS store data on-disk in pages. Every page is typically
composed of a header and a payload. There are two main ideas on how to
organise data within those payloads:
•	 Row oriented, where the payload contains a stack of rows.
•	 Column oriented, where the payload contains a stack of different values of the

same column (but belonging to different rows).

Both layouts (or orientations) have pros and cons. Generally speaking, row-
oriented storage engines will yield better performances for OLTP workloads, and
column oriented will yield better results for analytical workloads. The on-disk
layout can also influence the effectiveness of compression that you might want to
enable for better performance.

Compression

Compressing the data on disk can yield better IO performances at the expense
of some CPU overhead. The compression efficiency can be improved when your
DBMS uses specific compression algorithms optimised for the used data types
(check zson for an example).

Index type Targeted data types Targeted patterns/operators

B+ tree
Generic or heterogeneous data. It

should be your default choice.

Equality (=)

Range comparison (>, <)

Bitmap
Low cardinality values (as with boolean

or enumerations)

Analytical queries involving AND, OR

or XOR.

Hash
Large or non naturally ordered data

sets

Equality (specially when joining large

data sets)

BRIN Naturally sorted data sets (time series)
Equality (=)

Range comparison (>, <)

R-Tree Spatial data (geo-coordinates …)
Nearest neighbour, intersection,

overlaps, contained in and more

[B]KD-Tree
Spatial data (geo-coordinates,

geometric shapes)
Same as R-Tree

Inverted

Natural language (a.k.a. text search),

arrays, semi-structured data (JSON,

XML)

Inclusion of an item in a set

Bloom filter Natural language (a.k.a. text search)
Inclusion of an item in a set

Partial matching

https://en.wikipedia.org/wiki/Data_orientation
https://en.wikipedia.org/wiki/Online_transaction_processing
https://github.com/postgrespro/zson
https://en.wikipedia.org/wiki/B%2B_tree
https://en.wikipedia.org/wiki/Bitmap_index
https://en.wikipedia.org/wiki/Block_Range_Index
https://en.wikipedia.org/wiki/R-tree
https://www.postgresql.org/docs/8.2/functions-geometry.html
https://en.wikipedia.org/wiki/K-d_tree
https://en.wikipedia.org/wiki/Inverted_index
https://en.wikipedia.org/wiki/Bloom_filter

11

Extent based space management

Some databases, like SQL Server, use contiguous pages (called extents) to manage
on-disk space rather than individual pages (typically of 4KB size). Extents can
significantly improve the performance of your queries when handling relatively
large data sets.

We’ve covered the various database optimisations associated with the server
side of your database (hardware and database engine). Next, we’ll look at client
side features. These features are often overlooked, but play a key role in DBMS
performance (and reliability). Before diving into the client features let’s clarify the
client-server terminology.

Database deployment models

When considering the deployment layout of a DBMS, we can distinguish the
following categories:

•	 Client-server databases, such as MySQL and PostgreSQL, have separate client
and server units that you manage separately. The client components implement
the network communication protocol with the database server. The client-
server model tends to provide better scalability and easier centralised
management.

•	 Embedded databases, such as Dqlite, are typically provided as a library that
runs in the same node as your client application. The provided library contains
all the functionalities needed to store and manage your data. Embedded
databases tend to be lightweight and have better latencies.

The client features are more impactful in a client-server model than an embedded
model. Let’s check some of the client driver characteristics to look for when
optimising the overall response time or throughput.

Client
node

Client
node

Server
nodeDBMS

Application
code

Application
code

DBMS
library

DBMS
driver

API

API

Bindings

Embedded database

Client-server database

Bindings
Network
communication

https://learn.microsoft.com/en-us/sql/relational-databases/pages-and-extents-architecture-guide?view=sql-server-ver16
https://dqlite.io/docs

12

Driver characteristics

All DBMS provide one or more libraries that allow the applications to
communicate with their database server. Those libraries can be written in the
same language used by the application, in which case they are called native
drivers. They can also just be wrappers over another driver (usually implemented
in a low level language like C).

We can also complement those libraries with 3rd party tools (e.g. connection
poolers, proxies) to provide additional features. The following diagram provides
an overview on the possible combinations we might have:

When optimising for performance, it is better to reduce the number of
abstractions by picking a native driver that has all the features you need. Here are
the two most important features to look for from a performance perspective:

•	 Connection pooling. Acquiring a new connection to the database is often a
costly operation as it involves several steps like creating a new network
connection, spawning a dedicated server process or thread and establishing a
secure (i.e. encrypted) communication channel. Therefore, it is a common best
practice to maintain a small pool of cached connections and use them when an
interaction with the database is needed.

•	 Asynchronous (or reactive) programming. This feature allows non-blocking
calls to the database and might help achieve better throughput in highly
concurrent workloads. Note that, for the effect to be visible, the driver itself
should support non-blocking calls and not only provide an API that simulates
such a behaviour.

We’ve explored the most important DBMS features to optimise the overall
response time. It is also important to maintain the same level of responsiveness in
the event of traffic peaks or changing workload patterns. For this, you need to be
able to scale your DBMS.

Client
node

API

3rd party library - e.g. HikariCP

- e.g. pgBounce

Wrapper

3rd party library

Socket

DBMS driver

13

Scaling

Scaling helps you accommodate growing workloads and can take several forms.
We can scale:

•	 The number of DBMS deployments by adding new ones to typically
accommodate new customers. Such scaling is useful when you are segregating
your customers in different DBMS instances.

•	 Your operations to be able to manage additional deployments or growing usage
of the existing ones. You can scale operations by ramping up your team or by
using automation to help your existing staff manage a growing DBMS footprint.

•	 An existing DBMS deployment by allocating additional hardware resources to it.
This might be the best solution to accommodate organic growth or seasonal
peaks.

Canonical can help you address the first two points through our open source
database operators. Our operators help you automate several DBMS operations
within and across private and public clouds. So here we will rather focus on the
DBMS features related to hardware scaling.

You can scale hardware resources vertically by adding more storage, cpu cores
or ram to the same node where your DBMS is already running. You can also scale
horizontally by allocating additional nodes to your DBMS. Let’s check the features
that can help you leverage both types of scaling:

Horizontal scaling

There are 2 main features that you need to check:

•	 Read scaling is a feature that allows you to perform your read queries not only
on the primary but also on the replicas you might have.

•	 DBMS managed sharding is a feature that splits the data into different sets
(called shards or slices) and then places those shards in different physical nodes.
Sharding helps in scaling your write capacity.

Vertical scaling

There are different DBMS features that can help you scale your workloads by
optimising existing resources usage or adding resources “in-place” to your
existing infrastructure:

•	 Partitioning is similar to sharding but involves splitting the data into partitions
that are placed on the same node. Using different partitions can help accelerate
your queries by restricting the amount of data to be fetched to a single or few
partitions.

•	 Tablespaces is a feature that helps organising data into different locations,
which allows you to optimise the storage used per use case. For example, we
can place index and wal files belonging to a particular schema into fast SSDs
while placing the rest of the files in less performant storage. Thus, we can scale
performance according to the workload.

•	 Connection pooling on server side. When you have a big number of clients
(typically several hundreds) connected to your database, you might want to
implement connection pooling at server side even when you have connection
pooling at client side. Therefore, it is important to understand what connection
poolers are available in your target DBMS ecosystem (built-in or provided by
3rd party).

https://charmhub.io/?categories=databases&type=charm

14

Being able to scale your DBMS is one of the operability criteria to consider. Let’s
look at the other ones.

Operability

Your target total cost of ownership, availability, consistency, performance and
scalability should all be part of the operability requirements you need to check
against any technology you on-board in your team or organisation. Beyond these,
further considerations include:
•	 Security
•	 Compatibility/Integrability
•	 Support

Security

We went through the common security controls we need to implement to secure
a DBMS in this blog. To recap, here are the most important features you should
check:

•	 Encryption on the wire
•	 Encryption at rest
•	 Grouping of DBMS permissions into roles
•	 Auditing
•	 LDAP/Kerberos integration

Compatibility/Integrability

We recommend checking how well your chosen DBMS can integrate with your
existing ecosystem in terms of:

•	 Identity and Access Management solution, typically with existing LDAP/
Kerberos infrastructure.

•	 Programming languages. It is important to choose a DBMS that supports the
programming languages already used by your teams. It is even better when the
DBMS has native drivers in your preferred programming languages.

•	 CI/CD tools. It is important to test your workflows involving a DBMS in your CI/
CD pipeline. To do so, typically you need to use a containerised DBMS to ensure
reproducibility and a lightweight footprint. Canonical provides a number of
maintained container images that can fit your CI/CD needs.

•	 Observability stack. We need to monitor our DBMS fleet in a consistent
manner. Again, our Canonical-supported operators ship with a standard
observability stack that can help you easily achieve this target.

Support

Running a non supported combination of a DBMS and a set of 3rd party tools is
a recipe for security and reliability issues. Therefore, we recommend picking a
DBMS solution in which all the used components are supported and preferably
validated together.

Through an Ubuntu Pro subscription, you can get support and security fixes for
more than 25,000 open source packages for up to 10 years, including a large
number of DBMS related components. Moreover, our charmed operators ship
with a set of tightly integrated tools (e.g. DBMS server, proxy, monitoring tools)
that are tested and released together.

https://canonical.com/blog/secure-database
https://hub.docker.com/u/ubuntu
https://charmhub.io/topics/canonical-observability-stack
https://ubuntu.com/pro/subscribe
https://charmhub.io/?categories=databases&type=charm

15

Run your own tests

The next step is to put theory into practice and validate your choices with a series
of tests and benchmarks in realistic conditions where you use production-like
hardware and traffic. It is much better to run your own tests rather than just
relying on public benchmarks.

Trying to figure out, for example, whether PostgreSQL is faster than MongoDB
or the reverse will probably lead you to resources such as this Ongres benchmark
where PostgreSQL is claimed to be up to 15x faster than MongoDB, or this
MongoDB benchmark (that was written as a response to the first one) where
MongoDB is claimed to be up to 240x than PostgreSQL. Trying to search for a 3rd
party benchmark might lead you to this Arango benchmark where ArangoDB is
shown to be faster in some scenarios.

There is no one size fits all, and the benchmarks may favour one scenario over
another. So you need to run your own performance, availability and operability
tests. Do not hesitate to contact our Canonical experts if you need help
performing such tests or implementing a proof of concept of your new
data stack.

https://info.enterprisedb.com/rs/069-ALB-339/images/PostgreSQL_MongoDB_Benchmark-WhitepaperFinal.pdf
https://www.mongodb.com/blog/post/benchmarking-do-it-right-or-dont-do-it-at-all
https://canonical.com/data/postgresql#get-in-touch

© Canonical Limited 2024. Ubuntu, Kubuntu, Canonical and their associated logos are the registered trademarks of Canonical Ltd. All
other trademarks are the properties of their respective owners. Any information referred to in this document may change without
notice and Canonical will not be held responsible for any such changes.

Canonical Limited, Registered in Isle of Man, Company number 110334C, Registered Office: 2nd Floor, Clarendon House, Victoria
Street, Douglas IM1 2LN, Isle of Man, VAT Registration: GB 003 2322 47

Conclusion

This guide has covered a great deal of ground. To summarise, this is our
recommended methodology for choosing a DBMS:

1.	 Document the KPIs you will use to measure the success of your journey
(reduced cost, better performances, etc.).

2.	 Document the SLAs your DBMS needs to comply with in terms of availability,
consistency, response time, scaling and operability.

3.	 Use this guide to rank available DBMS based on the features they offer in
relation to your target SLAs. Use the ranking to keep the top 3 choices.

4.	 Iteratively run performance, availability and scaling tests on your chosen
DBMS.

5.	 Create a report detailing the pros and cons of every tested DBMS and
document the criteria used to choose the best option (e.g. using a weight
system).

6.	 Run qualification tests on your chosen DBMS to ensure it integrates well in
your ecosystem. Those tests need to emulate various flows including backup,
restore and incident management.

Canonical can help you in all the steps of your journey so do not hesitate to
contact us. We can speed up your decision making by sharing our expertise and
insights from running hundreds of databases in all IT sectors.

Further reading

For more insights into database design, backup and migration you can read the
following:

•	 https://ubuntu.com/engage/data-backups
•	 https://ubuntu.com/engage/database-cloud-migration
•	 https://ubuntu.com/blog/database-high-availability

https://ubuntu.com/support#apps-support
https://ubuntu.com/engage/data-backups
https://ubuntu.com/engage/database-cloud-migration
https://ubuntu.com/blog/database-high-availability

