
1

Security in depth with Ubuntu
Mapping security primitives to attacker capabilities

Whitepaper
Q1 2025

2

Contents
Executive summary� 3

Introduction� 4

Defend against known vulnerabilities� 5

Strengthening cryptographic integrity implementation� 6

Guarding against misconfigurations� 7

Protect against zero day vulnerabilities with Apparmor� 8

Securing your early boot software� 9

Defending against a completely compromised host
with confidential computing� 10

Conclusion� 12

3

Executive summary
Ubuntu’s security strategy is a multi-layered defense system,
designed to counter specific threats with calculated resilience.
Each security feature works in harmony to create a robust
platform capable of withstanding sophisticated attacks. By
recognizing the unique threats each layer addresses, you can
choose the defenses best suited to your environment.

Extended Security Maintenance (ESM) lays the groundwork
for this security response, swiftly addressing known
vulnerabilities with up to 12 years of dedicated patching.
With AppArmor in place, zero-day threats are caught in
tailored confines, allowing applications only the access they
need and nothing more, thwarting attackers’ lateral moves
within systems.

Ubuntu’s alignment with FIPS standards ensures
cryptographic integrity, essential for regulated industries,
while CIS benchmarks deliver customizable system hardening
that balances security and flexibility.

For those aiming to infiltrate at first boot, Secure Boot and
Full Disk Encryption (FDE) stand as gatekeepers. Secure Boot
enforces a chain of trust, letting only verified code through,
while FDE encrypts data at rest, rendering it untouchable
without the encryption key, useless to any intruder.

For the most formidable adversaries, Confidential Virtual
Machines (CVMs) reshape the rules. With Intel TDX and AMD
SEV SNP, Ubuntu builds a secure haven within the CPU itself,
decoupling data access from resource management. Even a
compromised hypervisor or malicious insider finds no entry
to sensitive data, only impenetrable isolation.

Ubuntu’s layered approach offers a symphony of security,
measured, deliberate, and adaptable, ready to meet today’s
threats and tomorrow’s unknowns with steady resilience.

4

Introduction

Back in the 1940s, the cybersecurity community flirted
with the idea of perfect security through the one-time pad.
Imagine: a cipher with a key as long as the message, used
only once, and with true randomness to guarantee absolute
secrecy. It was airtight and theoretically unbreakable.
However, perfection has a price: generating random keys and
distributing them securely became a logistical nightmare,
and reusing keys carried a risk of leaks. So, instead of
perfect security, we shifted toward computational security,
a realistic practical model that doesn’t seek absolute
unbreakability, but rather aims to make attacks so hard
they’re practically impossible.

Consider AES-256 encryption. Its security doesn’t come from
a guarantee that no one could ever break it. Instead, it banks
on the assumption that no attacker today (short of some
dystopian quantum supercomputer) could feasibly brute-force
the key. AES-256 stands firm not because it’s unbreakable
in theory, but because it would take millions of years for an
attacker to crack it. It is secure precisely because of what we
assume about the attacker's computational limitations.

Public key cryptography takes this concept and expands
it. When we use algorithms like Rivest–Shamir–Adleman
(RSA) or Elliptic Curve Cryptography (ECC), we’re banking
on the assumption that certain mathematical problems, like
factoring large numbers or solving discrete logarithms, are
computationally infeasible with current technology. The
beauty (and the gamble) of public key cryptography rests on
a crucial, open question in computer science: is Polynomial
time (P) equal to Nondeterministic Polynomial time (NP)?

This question, unsolved and fundamental, is a cornerstone
of our security architecture. If P were to equal NP, our whole
system could crumble, because it would imply that what we
think is hard, like breaking RSA keys, might in fact be easy
with the right algorithm.

Indeed, we are all playing a game in cybersecurity: a delicate,
high-stakes game defined by who we think is waiting on
the other side of our defenses. Forget about building walls
that no one could ever breach; instead, we’re aiming to build
fortresses that hold up against the resources we expect
attackers to bring to the table.

As such, our strongest defense is a security-in-depth
approach, where multiple, independent layers of security
work together to protect every level of a system. Instead of
relying on a single line of defense, each layer, whether it’s
network protocols, access controls, encryption, or physical
barriers, serves as an additional barrier to delay, detect, or
thwart attackers. This strategy embraces the reality that no
individual layer is infallible, and instead focuses on building
resilience through redundancy and diversity, making it
exponentially harder for an adversary to compromise the
entire system. Security in depth is adaptive, anticipating
evolving threats across the cybersecurity landscape, and as
such, it remains one of the most effective frameworks for
comprehensive protection.

In this paper, we’ll journey through the landscape of
the security primitives and solutions that make up
Ubuntu’s security in depth strategy, all through the
lens of computational security. From Extended Security
Maintenance (ESM) all the way to confidential computing.
For each section, we’ll analyze the specific threats it
addresses, the attacker capabilities it assumes and how
these solutions work together to create a layered, defense-
in-depth approach. Think of it as an upgrade path, from
defending against the simplest threats to countering
sophisticated adversaries.

5

Defend against known
vulnerabilities

At the most basic level, security begins by defending against
attackers who exploit known vulnerabilities. The moment
a vulnerability is made public, it’s not just your IT team
that knows, attackers around the world have the same
information. Once a CVE hits, exploits are quick to follow,
often spreading in days or even hours. And when those
exploits land in automated attack kits, you’re racing against
time: every hour without a patch is an hour where your
system could be compromised.

Unfortunately, organizations need 97.8 days on average
to fix a vulnerability, according to Snyk, and in a report
published by Verizon 2022, only 25% of the scanned
organizations were found to patch known vulnerabilities
within two months of their public disclosure. In today's
modern cyber risk landscape, this has to change. Entry-
level approaches to cyber security need to closely monitor
newly discovered vulnerabilities and automate patching for
these CVEs as soon as they are discovered. This is especially
true where your operations’ environment spans multiple
platforms: servers, SDKs, tech stacks, and mixes of open
source and proprietary software.

For the Ubuntu ecosystem, Each LTS release of Ubuntu
benefits from up to 12 years of security updates with an
Ubuntu Pro subscription. Throughout this period, the
Ubuntu security team takes in vulnerability reports every day
from MITRE, NVD, and other sources to continuously develop
and publish fixes as soon as security issues are discovered,
often before vulnerabilities are even made public. This
security patching covers the open source packages that form
the base of Ubuntu Main repository (2,300 packages), as well
as over 23,000+ packages in the Ubuntu Universe repository,
which include web servers, databases and development
tools. Together, they form a single trusted secure repository
that covers all the open source software required by users.
With Ubuntu Pro, the currently measured average time to fix
for Critical CVE vulnerabilities is less than 24 hours.

https://go.snyk.io/state-of-open-source-security-report-2022-dwn-typ.html
https://www.verizon.com/business/resources/reports/dbir/
https://www.verizon.com/business/resources/reports/dbir/
https://ubuntu.com/pro
https://ubuntu.com/pro

6

Strengthening cryptographic
integrity implementation

Now, let’s imagine an attacker who’s a bit more advanced:
one who would try to exploit flaws in cryptographic
algorithms or their implementations. Such an attacker may
not crack your encryption outright but may use techniques
like padding oracle attacks on improperly implemented
encryption schemes, or timing attacks to infer information
by analyzing how long certain cryptographic operations
take. Side-channel attacks like these exploit subtle flaws in
implementation rather than brute-forcing the encryption.
For instance, an attacker might target a system using AES-
CBC (Cipher Block Chaining) mode without proper padding,
enabling a padding oracle attack that could gradually reveal
plaintext information.

Alternatively, an insecure implementation of RSA could
leak private key bits through timing variations, allowing an
attacker to reconstruct the key over multiple attempts.

To mitigate these risks, it is crucial that enterprises avoid
applications that embed unvalidated cryptographic modules,
or use cryptographic libraries in ways that do not conform
to their security policies. For environments with higher
compliance needs, especially in government and regulated
industries, Ubuntu offers FIPS (Federal Information
Processing Standards) compliance. FIPS-certified modules
in Ubuntu mean that all cryptographic functions, from
hashing to encryption, meet the strict standards set by
the National Institute of Standards and Technology (NIST).
Ubuntu supports FIPS on Linux with a series of validated
components: the Linux Kernel Crypto API, OpenSSL and
OpenSSH, libgcrypt, and strongSwan.

https://ubuntu.com/security/certifications/docs/fips

7

Guarding against
misconfigurations

Now, consider a more resourceful attacker. Even with a
perfectly patched software stack, this attacker will target
systems with configuration weaknesses, settings left open
or poorly secured, whether through default configurations
or human error. Such an attacker is capable of probing for
weaknesses in system setup rather than software code. To
prevent attacks by this actor, it is vital to ensure robust and
secure configurations in your system.

While the default configuration of Ubuntu LTS releases
already balances between usability, performance and
security, mission-critical systems can be further hardened to
reduce their attack surface. Reducing the attack surface is a
widely accepted security best practice, and is often required
by cybersecurity frameworks.

Canonical works with industry leading organizations, such
as CIS and DISA, to produce security hardening benchmarks
for Ubuntu. These security benchmarks contain hundreds
of steps which can be prohibitively time-consuming to apply
manually, so we provide the Ubuntu Security Guide (USG) – a
tool based on OpenSCAP – to automate the process. USG
can generate remediation scripts to harden a system in one
procedure, as well as producing audit reports detailing the
hardening rules that have been applied. USG profiles are
available for CIS benchmarks and DISA STIGs.

Some of the hardening steps that are made available to
Ubuntu systems are:

•	 Disabling unused USB ports. If the server doesn’t need
to use certain hardware features, these can often
be disabled in the BIOS, to further prevent physical
attacks against the system.

•	 Configuring the disks with full disk encryption. Disk
encryption means that someone can’t take the disks
out of the machine and access or modify the contents
offline. In cloud environments and virtual machines,
disk encryption also prevents a malicious actor at the
hypervisor level from accessing your virtual disks.

•	 Removing unnecessary and unused components. A
Linux OS such as Ubuntu contains packages to cover
a very wide range of use cases, but it’s likely that a
production system will only have a small number of
critical workloads. Any package not supporting these
workloads should be removed.

•	 Tightening default settings and enforcing encryption.
Ensure directories are configured to allow only the
minimum privileges required to run the production
workloads, and encrypt file systems.

•	 Configuring logging and integrity checks. All system
and application logs should be stored on a remote
server to ensure that in the event of a hack the
attacker can’t delete the logs to cover their tracks.
File integrity monitoring software should be deployed
to provide warnings if any unexpected changes occur
which might be indicative of an attack.

Hardening benchmarks have broad applicability across a
wide range of industries, and are useful for any organization
deploying services on the internet. Some industry sectors
carry specific regulatory requirements which mandate
system hardening, such as the Payment Card Industry Data
Security Standard (PCI-DSS).

https://ubuntu.com/security/certifications/docs/usg

8

Protect against zero day
vulnerabilities with Apparmor

Now consider an even more sophisticated attacker, armed
with a zero-day vulnerability and poised to exploit a critical
flaw in an application’s code. Their goal: gain unauthorized
access, execute malicious actions, or move laterally within
the system.

Clearly, there is no patch to apply here, and no patching
solution will serve as an effective defense until the
vulnerability is disclosed. However, if AppArmor is in
place, the impact of a potential exploit can be significantly
constrained. AppArmor enforces Mandatory Access Control
(MAC) through profiles that define strict limits on what
applications can access and do, effectively containing
potential exploit pathways, even for unknown vulnerabilities.

Ubuntu comes pre-installed with a range of AppArmor
profiles for common applications. Furthermore, if your
critical workload application doesn’t have a profile, it is
straightforward to create one. This is particularly important
for any network-facing processes. In order to generate a new
profile, AppArmor can be put into Complain-mode while the
application is run with its full range of capabilities, capturing
the actions taken into a file. This file can then be used as a
new profile for Enforce-mode.

https://ubuntu.com/server/docs/apparmor

9

Securing your early
boot software

Now let’s imagine an attacker targeting your system even
before it fully starts, aiming to insert malware during the
earliest stages of booting up. This is a sophisticated and
stealthy approach, as early boot software and firmware
are foundational components, responsible for initializing
the hardware, verifying components, and loading the
operating system (OS) itself. By compromising this phase,
attackers can establish a foothold that is deeply embedded,
difficult to detect, and nearly impossible to remove without
specialized tools.

Early boot software and firmware, including the bootloader,
UEFI/BIOS firmware, and trusted computing base, are critical
because they act as a root of trust for the entire device.
When these components are tampered with, they allow
malware to execute with the highest privileges, even before
the OS security mechanisms are loaded.

One of the major challenges in protecting early boot
firmware is that it often resides on non-volatile memory
(e.g., flash memory) on the motherboard. This memory can
be modified if not properly protected, allowing attackers to
inject malicious code that will persist even after reboots or
factory resets. Firmware-based malware can hide itself by
avoiding detection mechanisms that operate at the OS level,
making it invisible to most security solutions.

Given these risks, securing early boot software and firmware
is essential. Techniques like Secure Boot, which ensures only
trusted, signed firmware is executed, and hardware-based
protections, like TPMs or Platform Security Processors
(PSPs), can help mitigate these risks. Furthermore,
firmware updates should be cryptographically signed and
authenticated to prevent unauthorized modifications.
Detecting and protecting against these threats requires a
robust, multi-layered security approach that spans hardware,
firmware, and software, ensuring each stage is safeguarded
to maintain the system’s integrity from power-on through to
full operation.

Ubuntu defends against these high-level threats with
two critical protections: Full Disk Encryption (FDE) and
Secure Boot.

•	 Secure Boot: it enforces a chain of trust during the
boot process, preventing unauthorized code from
running and ensuring that only signed, trusted
software is loaded. In Ubuntu’s Secure Boot process,
all pre-built boot binaries, except the initial ramdisk
(initrd) image, are signed with Canonical’s UEFI
certificate, embedded within the shim loader signed by
Microsoft.

•	 Full Disk Encryption (FDE): it ensures that all data on
the disk is inaccessible without the encryption key,
safeguarding the device even if an attacker gains
physical access. Enabled through the Logical Volume
Manager (LVM) and Linux Unified Key Setup (LUKS)
during Ubuntu installation. This means that unless
the correct decryption password is provided, it’s
impossible for an attacker to read, write, or alter any
files on the disk.

10

Defending against a
compromised host with
confidential computing

Finally, let’s picture the strongest type of adversary: one
capable of compromising the host environment itself. This
attacker can infiltrate the platform’s firmware and privileged
system software, including the host OS and hypervisor, and
may even have the backing of malicious administrators.

Traditionally, this level of access would expose your
workloads to significant risk, with any vulnerability in the
privileged system software compromising the confidentiality
and integrity of your data and code. Historically, the
hypervisor, host OS, firmware and DMA-capable devices
were implicitly trusted to access and manage virtual
machine (VM) resources. Since these components managed
execution, memory and hardware access, they were granted
access to workload data – a necessary risk for operational
control. However, this model left sensitive code and data
vulnerable to host-level threats.

Today, confidential computing has emerged to
fundamentally shift this paradigm by decoupling resource
management from data access. Through this new security
primitive, privileged system software like the hypervisor
can still manage VM resources without direct access to the
data within the VMs. This means that, even if a vulnerability
exists in the hypervisor or host OS, it cannot compromise the
security of confidential workloads.

To achieve this level of isolation, new CPU security extensions
such as AMD SEV (Secure Encrypted Virtualization) and Intel
TDX (Trusted Domain Extensions) have been developed,
introducing two critical security pillars:

1.	 Memory Isolation through Hardware-Level
Encryption: CPUs with confidential computing
capabilities use an AES encryption engine within their
memory controller to encrypt and decrypt memory
pages with each read or write operation. This ensures
that workload data is stored in encrypted form in
system memory, accessible only within the secure
execution environment. The encryption and decryption
happen transparently within the CPU, providing strong
memory isolation without performance penalties.

2.	 Hardware-Based Access Control: Confidential
computing-enabled CPUs incorporate new instructions
and data structures that allow auditing and control
over memory management and platform device access,
typically handled by privileged system software. These
mechanisms help detect unauthorized modifications
and replay attacks by tracking the memory pages
mapped to confidential workloads, preserving data
integrity against tampering.

https://ubuntu.com/confidential-computing

1111

To help users harness these hardware-rooted security
guarantees, Canonical offers Ubuntu Confidential Virtual
Machines (CVMs) powered by Intel TDX and AMD SEV
SNP. Ubuntu CVMs create a hardware-rooted execution
environment that logically isolates workloads from the host,
reducing the trusted computing base to just the application
and the CPU. Ubuntu CVMs are available today on all
major public cloud providers, and if you are a private cloud
customer, you can also use Ubuntu on both the host and the
guest to build your confidential private cloud.

Ubuntu Pro Extended Security maintenance
Defend against known vulnerabilities

Ubuntu Pro compliance
Strengthen cryptographic integrity implementation

Apparmor
Protect against zero day vulnerabilities

secure boot and full disk encryption
Secure your early boot software

confidential computing
Defend against a compromised host

Ubuntu Pro automated hardening
Guard against misconfigurationsD

e
fe

n
se

-i
n

-d
e

p
t

h
 l

a
y

e
r

s

Defending against a compromised host with confidential computing

12

Conclusion
Every security measure Ubuntu designs is crafted to
withstand the capabilities of a hypothetical attacker, smart
enough to pose a threat, but not infinitely resourced. It’s
a calculated balance, one that frames everything we do
in cybersecurity, from encryption choices to intrusion
detection. This is where we live: in a world where “good
enough” is not an admission of defeat; it is our best strategy,
in a chess game against the unknown.

As such, Ubuntu’s security offerings are much more than
just a collection of tools. They are an ecosystem of layered
defenses, each tuned to address specific threat levels and
attacker capabilities. By understanding the unique threats
each measure counters, you can make informed choices about
which defenses are most important for your environment.

From patching known vulnerabilities with ESM, to hardening
configurations, securing the boot process, and protecting
against malicious host environments, Ubuntu gives you the
flexibility to adapt to a range of security needs. This layered
approach, with clear mappings from defense to threat, isn’t
just practical; it is powerful. Whether you’re managing a
small team or securing critical infrastructure, Ubuntu’s depth
of security provides the resilience and confidence to meet
both current and future threats head-on.

Learn more about Ubuntu Pro and start building your secure
infrastructure now.

Our security experts are also ready and glad to discuss your
security needs in more detail.

Additional Resources •	 Ubuntu Pro

•	 What is System Hardening? Essential Checklists from OS to Applications | Ubuntu

Reach out today to discuss how we can secure
your environment.

https://ubuntu.com/pro
https://ubuntu.com/pro
https://ubuntu.com/blog/what-is-system-hardening-definition-and-best-practices
https://ubuntu.com/confidential-computing#get-in-touch

13

© 2025
Canonical Limited

All other trademarks
are the properties of their
respective owners.

Any information referred
to in this document may
change without notice and
Canonical will not be held
responsible for any
such changes.

Ubuntu, Kubuntu, Canonical
and their associated
logos are the registered
trademarks of
Canonical Ltd.

Canonical Limited

Registered in Isle of Man,
Company number 110334C

Registered Office

2nd Floor Clarendon House
Victoria Street, Douglas

IM1 2LN
Isle of Man

	Executive summary
	Introduction
	Defend against known vulnerabilities
	Strengthening cryptographic integrity implementation
	Guarding against misconfigurations
	Protect against zero day vulnerabilities with Apparmor
	Securing your early
boot software
	Defending against a completely compromised host with confidential computing
	Conclusion

